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Vector fields

Definition

If Σ is a surface (in Rn), then a vector field on Σ is a choice of a tangent
vector at each point of the surface.

Definition

We can define singular points, indices of singular points the same way we
defined these notions on the plane.

Note: not clear how to define index of a curve.
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Vector fields on a sphere

Theorem

Suppose we are given a vector field on a sphere with finitely many singular
points. Then the sum of indices of all singular points equals 2.

Corollary

Any vector field on a sphere has a singular point.

Corollary

You can’t comb a hairy ball. In particular, there always will be at least one
hair perpendicular to the surface.
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Main theorem

Theorem (Poincare-Hopf)

If Σ is an orientable surface with no boundary, an v is a vector field on it,
then sum of indices of all singular points equals to χ(Σ).

Sketchy proof:

We will argue by induction.

If genus g = 0, then Σ is just a sphere. We already know the theorem
for the sphere.

Suppose Σ has genus g . We can cut Σ as follows:
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We can always make the cut along a curve with no singular points on
it.

Glue two caps to the obtained surface as follows:

We need to define the vector field on the two caps.

We can assume that caps are discs with the vector field being defined
on their boundaries.

Define vector field on those discs using homothety with center at the
discs’ center.
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Sum of the indices of singular points on the two caps is 2 .

Since the cut didn’t pass through singular points, the total sum of
indices on Σ equals to 2− (g − 1)− 2 = 2− 2g .

Done.
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Theorem

Vector field with no singular points defined on the boundary of an
annulus can be extended to the whole annulus iff indices of the boundary
circles are equal.

Proof:
First prove the “⇒” part. Suppose we can extend the vector field to
the the whole annulus.

Since it doesn’t have singular points, we can deform the outer circle
into the inner circle not passing through a singular point.

So the indices of the circles are equal.
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Let’s prove the “⇐” part.

We have vector fields v ,w on the boundary of the annulus (inner and
outer circles resp.) having the same indices.

We want to continue it to a vector field on the whole annulus with no
singular points.

For any vector field u on a circle S1 let’s build a function φ as follows.
Any point on S1 is determined by its angle α. Then φ(α) is the angle
between the two vectors u0 and uα.
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So φ(0) = 0 and φ(2π) = 2kπ, k is the index of the circle.

Construct such graphs for the two circles making the boundary of the
annulus. They will look something like that:
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To define any (non-vanishing) vector field u of index k on a circle, it
is enough so say what is u(0), define a function φ satisfying φ(0) = 0
and φ(2π) = 2kπ, and define a function l(α) which will tell the
length of the vector at angle α.

We can use that to define a required vector field on the annulus.

Break the annulus into a family Ct of circles, with C0 being the inner
circle, C1 – the outer one. So t ∈ [0, 1].

Define lt(α) = (1− t) · |vα|+ t · |wα|.
Define ut(0) = (1− t)vα + twα.

Define φt(α) = (1− t)φv (α) + tφw (α).

This defines the required vector field.
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Alternative proof of the Poincare-Hopf theorem

Cut the surface into two pieces D1 and D2 as follows:

We can assume the cut doesn’t have singular points on it.

Denote the boundary circles by γ0, γ1, . . . , γg with γ0 denoting the
exterior circle.

Orient γ0 counter-clockwise and all other γi ’s clockwise.
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We need to show that for j = 1, 2 we have

∑
vj (x)=0,x∈Dj

ind(x) =

g∑
i=0

indvj (γi )

Idea: we decompose each Dj by curves, so that the regions they
bound have only one singular point. Then the formula is easy.
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Results of the previous slide give that

g∑
i=0

(indv1(γi ) + indv2(γi )) =
∑

x∈Σ, singular

ind(x)

To finish the proof we need to show that indv1(γi ) + indv2(γi ) = −2
for i = 1, . . . , g and indv1(γ0) + indv2(γ0) = 2.

Let’s prove it for γ0, and for other γi ’s it is similar.

Any point on γ0 is defined by its angle α. Vectors v1(α) and v2(α)
are reflections of each other w.r.t. the tangent line to the circle at the
point α.
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The reflection at the point α is given by the formula

v 7→ 2(α + π/2)− v

Therefore we have v1(α) = 2(α + π/2)− v2(α), so
v1(α) + v2(α) = 2α + π.

So when α is changing from 0 to 2π, the sum v1(α) + v2(α) is
changing from π to 5π, making two rotations.

So indv1(γ0) + indv2(γ0) = 2.

We are done.
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Theorem

At any moment, there are two antipodal points on Earth having exactly
the same temperature and air pressure.

Proof:
We define the map f : S2 → R2 sending each point x ∈ S2 to the pair
(temperature, pressure) at this point.

We want to show that f (x) = f (−x) for some point x ∈ S2. Suppose
this is not the case.

Then f (x) 6= f (−x) for each point x ∈ S2.

Therefore we can define a continuous map S2 → R2 sending

x 7→ f (x)− f (−x).

This gives a vector field on S2 with no singular points.

That’s sad...
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Summary

Knots:
Coloring invariants, Conway polynomial, HOMFLY polynomial, genus.

Surfaces:
Euler characteristic, orientability, number of boundary components.

Vector fields:
Euler characteristic, indices.
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